
Actions Cheat Sheet

GitHub Actions give you the flexibility to build automated software development lifecycle workflows. You can write individual
tasks, called actions, and combine them to create custom workflows in your repository. GitHub Actions are automated
processes allowing you to build, test, package, release, or deploy any code project on GitHub, but you can also use them to
automate any step of your workflow: merging pull requests, assigning labels, triaging issues to name a few.

Workflow Syntax
Workflow files use YAML syntax, and must have either a .yml
or .yaml file extension. You must store workflow files in the
.github/workflows/ directory of your repository. Each
different YAML file corresponds to a different workflow.

name: My Workflow
on:
 push:
 branches:
 - 'releases/*'
 - '!releases/**-alpha'
env:
 message: 'conversation'
 my_token: ${{ secrets.GITHUB_TOKEN }}
jobs:
 my_build:
 runs-on: ubuntu-latest
 steps:
 - name: Checking out our code
 uses: actions/checkout@master
 - name: Say something
 run: |
 echo "A little less ${message}"
 echo "A little more action"
 my_job:
 needs: my_build
 container:
 image: node:10.16-jessie
 env:
 NODE_ENV: development
 ports:
 - 80
 volumes:
 - my_docker_volume:/volume_mount
 options: --cpus 1
 services:
 redis:
 image: redis
 ports:
 - 6379/tcp

Workflow name
The name of your workflow will be displayed on your
repository’s actions page.

Workflow, Job or Step env
A map of environment variables which can be set at different
scopes. Several environment variables are available by default
(GITHUB_SHA, GITHUB_REF, GITHUB_EVENT_NAME, HOME,
GITHUB_EVENT_PATH…) as well as a secret, GITHUB_TOKEN,
which you can leverage for API calls or git commands through
the secrets context.

on Event
The type event that triggers the workflow. You can provide a
single event string, an array of events, or an event
configuration map that restricts the execution of a workflow:

When using the push and pull_request events, branches
and tags allow to select or exclude (with the ! prefix) git
references the workflow will run on, while paths specifies
which files must have been modified in order to run the
workflow.
If your rules are only made of exclusions, you can use
branches-ignore, tags-ignore and paths-ignore. The -
ignore form and its inclusive version cannot be mixed.
The types keyword enables you to narrow down activities
(opened, created, edited…) causing the workflow to run.
The list of available activities depends on the event.
A workflow trigger can also be scheduled:

on:
 schedule:
 - cron: '*/15 * * * *'

jobs Collection
A workflow run is made up of one or more jobs identified by a
unique job_id (my_build or my_job). Jobs run in parallel by
default unless queued with the needs attribute. Each job runs
in a fresh instance of the virtual environment specified by
runs-on.

Job name
The name of the job displayed on GitHub.

needs
Identifies any job that must complete successfully before this
job will run. It can be a string or array of strings. If a job fails,
all jobs that need it are skipped unless the jobs use a
conditional statement that causes the job to continue.

runs-on
The type of virtual host machine to run the job on. Can be
either a GitHub or self-hosted runner. Jobs can also run in
user-specified containers (see: container). Available GitHub-
hosted virtual machine types are ubuntu-latest, windows-
latest, macOS-latest plus some other specific versions for
each operating system, in the form of ubuntu-xx.xx, macOS-
xx.xx or windows-xxxx. To specify a self-hosted runner for
your job, configure runs-on in your workflow file with self-
hosted runner labels. Example: [self-hosted, linux].

Actions Cheat Sheet

container
Instead of running directly on a host selected with runs-on,
a container can run any steps in a job that don’t already
specify a container. If you have steps that use both script and
container actions, the container actions will run as sibling
containers on the same network with the same volume
mounts. This object has the following attributes: image, env,
ports, volume and options.

timeout-minutes
The maximum number of minutes to let a workflow run before
GitHub automatically cancels it. Default: 360

services
Additional containers to host services for a job in a workflow.
These are useful for creating databases or cache services.
The runner on the virtual machine will automatically create a
network and manage the lifecycle of the service containers.
Each service is a named object in the services collection
(redis or nginx for example) and can receive the same
parameters than the container object.

Job steps
A job contains a sequence of tasks called steps. Steps can
run commands, run setup tasks, or run an action from your
repository, a public repository, or an action published in a
Docker registry. Each step runs in its own process in the
virtual environment and has access to the workspace and
filesystem.

Step name
Specify the label to be displayed for this step in GitHub. It’s
not required but does improve readability in the logs.

uses
Specify an action to run as part of a step in your job. You can
use an action defined in the same repository as the workflow,
a public repository elsewhere on GitHub, or in a published
Docker container image. Including the version of the action
you are using by specifying a Git ref, branch, SHA, or Docker
tag is strongly recommended:
uses: {owner}/{repo}@{ref} for actions in a public
repository
uses: {owner}/{repo}/{path}@{ref} for actions in a
subdirectory of a public repository
uses: ./path/to/dir for actions in a a subdirectory of
the same repository
uses: docker://{image}:{tag} for actions on Docker
Hub
uses: docker://{host}/{image}:{tag} for actions in
a public registry

with
A map of the input parameters defined by the action in its
action.yml file. When the acion is container based, special
parameter names are:
args, a string that defines the inputs passed to a Docker
container’s ENTRYPOINT. It is used in place of the CMD
instruction in a Dockerfile.
entrypoint, a string that defines or overrides the
executable to run as the Docker container’s ENTRYPOINT.

if
Prevents a step from running unless a condition is met. The
value is an expression without the ${{ … }} block.

run
Instead of running an existing action, a command line program
can be run using the operating system’s shell. Each run keyword
represents a new process and shell in the virtual environment. A
specific shell can be selected with the shell attribute. Multiple
commands can be run in a single shell instance using the |
(pipe) operator.

Job strategy
A build matrix strategy is a set of different configurations of the
virtual environment. The job’ set of steps will be executed on
each of these configurations. The following exemple specifies 3
nodejs versions on 2 operating systems:

runs-on: ${{ matrix.os }}
strategy:
 matrix:
 os: [ubuntu-16.04, ubuntu-18.04]
 node: [6, 8, 10]
steps:
 - uses: actions/setup-node@v1
 with:
 node-version: ${{ matrix.node }}

fail-fast
When set to true (default value), GitHub cancels all in-progress
jobs if any of the matrix job fails.

Context and expressions
Expressions can be used to programmatically set variables in
workflow files and access contexts. An expression can be any
combination of literal values, references to a context, or
functions. You can combine literals, context references, and
functions using operators. With the exception of the if key,
expressions are written in a ${{ … }} block. Contexts are
objects providing access to runtime information. The following
objects are available: github, job, steps, runner, secrets,
strategy and matrix.

Artifact storage & Caching
An artifact is a file or collection of files produced during a
workflow run that can be stored and shared between jobs in a
workflow run. Use actions actions/upload-artifact and
actions/download-artifact with parameters name and path
to manipulate artifacts. Artifacts can be downloaded through the
Web interface for 90 days.
For dependencies and other commonly reused files across runs
of a given workflow, use the actions/cache action with
parameters:
key: The key used to save and search for a cache.
path: The file path (absolute or relative to the working
directory) on the runner to cache or restore.
restore-keys: Optional - An ordered list of alternative keys
to use for finding the cache if no cache hit occurred for key.

- uses: actions/checkout@v1
- name: Cache node modules
 uses: actions/cache@v1
 with:
 path: node_modules
 key: x-y-${{hashFiles('**/package-lock.json')}}
 restore-keys: |
 x-y-
 x-

Enterprise
Bring GitHub to work, on-premises or in the cloud

https://enterprise.github.com

Find Actions on GitHub Marketplace at github.com/marketplace
Read about GitHub Actions at help.github.com/actions
Join a GitHub Learning Lab course at lab.github.com

